25/11/12

DNA Nanotechnology Helps Construct Synthetic Membrane Channels

As reported in the journal Science, physicists at the Technische Universitaet Muenchen (TUM) and the University of Michigan have shown that synthetic membrane channels can be constructed through "DNA nanotechnology."
This technique employs DNA molecules as programmable building materials for custom-designed, self-assembling, nanometer-scale structures. The researchers present evidence that their nature-inspired nanostructures may also behave like biological ion channels. Their results could mark a step toward applications of synthetic membrane channels as molecular sensors, antimicrobial agents, and drivers of novel nanodevices.
This 3-D print shows the structure of a functional synthetic membrane channel constructed through DNA nanotechnology -- that is, using DNA molecules as programmable building materials for custom-designed, self-assembling nanometer-scale structures. This DNA-based membrane channel consists of a needle-like stem 42 nanometers long with an internal diameter of just two nanometers, partly sheathed by a barrel-shaped cap. A ring of cholesterol units around the edge of the cap helps the device "dock" to a lipid membrane while the stem sticks through it, forming a channel that appears capable of behaving like a biological ion channel. The device is formed by 54 double-helical DNA domains on a honeycomb lattice. (Credit: Dietz Lab, TU Muenchen; copyright TU Muenchen)

To read more about this article, please visit AzoNano

Dip Pen Nanolithography



What is DPN?

 Dip Pen Nanolithography (DPN) is a direct write, tip based lithography technique capable of multi-component deposition of a wide range of materials with nanoscale registry. DPN can fabricate multiplexed, customized patterns with feature sizes as small as 50 nm or as big as 10 µm on a variety of substrates including glass, plastic, gold and silicon. Using arrays of “pen” tips, these features can be printed over large areas, with pattern design and fabrication often taking less than an hour to complete. DPN is a powerful yet simple-to-use benchtop technology that delivers direct write patterning capabilities without the need for a cleanroom, master stamp or photomask. With the ability to operate under ambient conditions and deposit features with sub-cellular resolution, DPN can successfully print organic, inorganic, and biological materials (including proteins, nucleic acids, lipids, hydrogels, alkanethiols, silanes, polymers and nanoparticles) in complex user-defined patterns. Features generated by DPN are very uniform, so assays constructed with these features deliver exceptional reproducibility.


Micro and nanotechnologies revolutioning medicine


22/11/12

Biocápsulas


Nanotubos de carbono-Aplicaciones

Las propiedades de los nanotubos de carbono han causado que diversos investigadores y compañías consideren sus usos en diversos campos. A continuación se en listarán algunas de sus aplicaciones en dichos campos.
Salud
-Se ha demostrado que músculos artificiales  compuestos de una fibra tejida de nanotubos de carbono y rellenados con cera pueden levantar pesos hasta 200 veces más pesadas que músculos naturales del mismo tamaño.
-Nanotubos funcionalizados con anticuerpos producidos por pollos se han demostrado útiles en pruebas para la destrucción de células cancerígenas en el pecho.
-Se desarrolló un sensor que utiliza nanotubos y partículas de oro para detectar proteínas que indican la presencia de cáncer.
-Implantes médicos de plástico poroso recubiertos con nanotubos se están utilizando para entrega de fármacos. Fármacos terapéuticos que se adjuntan a nanotubos pueden ser liberados al torrente sanguíneo para una mayor efectividad lo que se ha denominando como "biocápsulas"

Medio ambiente
-Uso de nanotubos de carbono para limpiar derrames de petróleo ya que actúan como una esponja.

Energía
-En las baterías, el uso de nanotubos disminuye el tamaño de la batería haciendo posible incluso que las baterías se utilicen como una capa de pintura que unicamente necesita los componentes de manera ordenada.
-Los ultracapacitores se están desarrollando con nanotubos, estos ultracapacitores pueden almacenar una mayor cantidad de energía, suficiente para activar carros híbridos.

Materiales
 Aparte de crear materiales más resistentes que el acero y con unas mejores propiedades, el uso de nanotubos también permitirá a dichos materiales el cambiar de forma a "voluntad" del usuario como se demuestra en el siguiente video de la NASA, una aproximación futurista del desarrollo de estos materiales.


If you want to make contributions or suggestions to this blog please send an e-mail to: imontforten@gmail.com